Optimization Theory and Algorithm Lecture 9 - 05/25/2021

Lecture 9

Lecturer: Xiangyu Chang Scribe: Xiangyu Chang

Edited by: Xiangyu Chang

1 Algorithm and Theory

For the convex and B-smooth function f, we use the same iterative method, that is

x T =x! — %Vf(xt).

Theorem 1 Let f be a convex and B-smooth function, and {x'}3°, is generated by the gradient descent
algorithm with 1/3 as the step size. Then for any € > 0, take T > gHXO —x*|?,

FxT) = f*<e (1)

Proof 1 Recall that

() = Fx) + (7, %~ x) + 5

I — x|,

then we can further prove that, for any X,y

maly) = mao0) + (ma(x),y — %)+ 2 lly — x| )

We know that x**1 is the minimizer for the quadratic model my(x). In Eq.(2), take y = x* and x = x'T!
then we have,
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Since my is a global quadratic upper bound of f, then
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So, we have
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Remark 1 Let us discuss the convergence speed. Suppose that, take ¢ = 1072, then according to Theorem
1, it should be T > 10%. If we take ¢ = 1073, then T > 103.

2 Gradient Descent for Beta Smooth and Alpha Strong Convex
Function

Definition 1 We say that a C'-smooth function f is a-strongly convex (with o > 0) if the following in-
equality holds,

F3) 2 £ + (VFG,y = %) + Sy =xI” vx,y € ().
An immediate consequence of the definition is the following lemma.
Lemma 1 If x* is the local minimal point of f, the it has
F3) 2 F) + Slly = |7 vy
Theorem 2 [ is a-strongly convex if and only if f(x) — $[|x[|* is convex.
Theorem 3 Suppose f € Ct. Then the following are equivalent:

1. f is a-strongly conver.

2. (VI(y) = Vf(x),y —x) > a|x - y|*.
3. Additionally, if f € C?, then V2f = al everywhere (V2 f is positive definite).

Theorem 4 Assume that f is a B-smooth and a-strongly convex function, and f* = inf f(x) exists, then

0 *
or any € > 0, choose T > 2510 M, it has ||[xT — x*|| < e.
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Proof 2 )
s == o = = S )
2 1
= [|x" — x"||* + 3 (f(x'),x" —x') +@||f(x‘*)ll2

* ¢ 2
<) — () = g |l —x" |
follows from strong convexity
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where (1 — %) < exp (—%T) .

Example 1 Let us consider the portfolio management problem again. That is

1
m)in flx) = ixTZX —u'y, (4)

where ¥ € SV .

e Vf(x)=23x — u, then it can be derived that f is Apax := Amax(2Z)-smooth.

o V2f(x) =X = Auin(X)1. So, it is Apin-strongly convex.

Algorithm: x!*! = x! — ﬁ(th —p) = (I — 2=)xt + L&

Amax Amax ©

Convergence: [|x"*! —x*[|2 < (1 — guin)[|x" — x*||2.

ma.

i‘\m‘”‘ is the condition number of X.

min

The higher the condition number, the lower the convergence.
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