Optimization Theory and Algorithm

Lecture 9 - 05/25/2021

Lecture 9

Lecturer:Xiangyu Chang Scribe: Xiangyu Chang

Edited by: Xiangyu Chang

1 Algorithm and Theory

For the convex and β -smooth function f, we use the same iterative method, that is

$$\mathbf{x}^{t+1} = \mathbf{x}^t - \frac{1}{\beta} \nabla f(\mathbf{x}^t).$$

Theorem 1 Let f be a convex and β -smooth function, and $\{\mathbf{x}^t\}_{t=0}^{\infty}$ is generated by the gradient descent algorithm with $1/\beta$ as the step size. Then for any $\epsilon > 0$, take $T \geq \frac{\beta}{\epsilon} \|\mathbf{x}^0 - \mathbf{x}^*\|^2$,

$$f(\mathbf{x}^T) - f^* \le \epsilon. \tag{1}$$

Proof 1 Recall that

$$m_t(\mathbf{x}) = f(\mathbf{x}^t) + \langle f(\mathbf{x}^t), \mathbf{x} - \mathbf{x}^t \rangle + \frac{\beta}{2} ||\mathbf{x} - \mathbf{x}^t||^2,$$

then we can further prove that, for any \mathbf{x}, \mathbf{y}

$$m_t(\mathbf{y}) \ge m_t(\mathbf{x}) + \langle m_t(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\beta}{2} ||\mathbf{y} - \mathbf{x}||^2.$$
 (2)

We know that \mathbf{x}^{t+1} is the minimizer for the quadratic model $m_t(\mathbf{x})$. In Eq.(2), take $\mathbf{y} = \mathbf{x}^*$ and $\mathbf{x} = \mathbf{x}^{t+1}$, then we have,

$$m_t(\mathbf{x}^*) \ge m_t(\mathbf{x}^{t+1}) + \frac{\beta}{2} ||\mathbf{x}^{t+1} - \mathbf{x}^*||^2.$$

Since m_t is a global quadratic upper bound of f, then

$$f(\mathbf{x}^{t+1}) \leq m_t(\mathbf{x}^{t+1})$$

$$\leq m_t(\mathbf{x}^*) - \frac{\beta}{2} \|\mathbf{x}^{t+1} - \mathbf{x}^*\|^2$$

$$= \underbrace{f(\mathbf{x}^t) + \langle f(\mathbf{x}^t), \mathbf{x}^* - \mathbf{x}^t \rangle + \frac{\beta}{2} \|\mathbf{x}^* - \mathbf{x}^t\|^2 - \frac{\beta}{2} \|\mathbf{x}^* - \mathbf{x}^{t+1}\|^2}_{m_t(\mathbf{x}^*)}$$

$$\leq \underbrace{f^*}_{f(\mathbf{x}^t) + \langle f(\mathbf{x}^t), \mathbf{x}^* - \mathbf{x}^t \rangle}_{f(\mathbf{x}^t), \mathbf{x}^* - \mathbf{x}^t} + \frac{\beta}{2} \|\mathbf{x}^* - \mathbf{x}^t\|^2 - \frac{\beta}{2} \|\mathbf{x}^* - \mathbf{x}^{t+1}\|^2$$

$$\leq f^* + \frac{\beta}{2} (\|\mathbf{x}^* - \mathbf{x}^t\|^2 - \|\mathbf{x}^* - \mathbf{x}^{t+1}\|^2).$$

Thus,

$$\begin{split} \sum_{t=1}^{T-1} (f(\mathbf{x}^{t+1}) - f^*) &\leq \frac{\beta}{2} \sum_{t=1}^{T-1} (\|\mathbf{x}^* - \mathbf{x}^t\|^2 - \|\mathbf{x}^* - \mathbf{x}^{t+1}\|^2) \\ &= \frac{\beta}{2} (\|\mathbf{x}^* - \mathbf{x}^0\|^2 - \|\mathbf{x}^* - \mathbf{x}^T\|^2). \end{split}$$

So, we have

$$f(\mathbf{x}^T) - f^* \le \frac{1}{T} \sum_{t=0}^{T-1} (f(\mathbf{x}^{t+1}) - f^*) \le \frac{\beta}{2T} \|\mathbf{x}^* - \mathbf{x}^0\|^2.$$
 (3)

Remark 1 Let us discuss the convergence speed. Suppose that, take $\epsilon = 10^{-2}$, then according to Theorem 1, it should be $T > 10^2$. If we take $\epsilon = 10^{-3}$, then $T > 10^3$.

2 Gradient Descent for Beta Smooth and Alpha Strong Convex Function

Definition 1 We say that a C^1 -smooth function f is α -strongly convex (with $\alpha \geq 0$) if the following inequality holds,

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\alpha}{2} \|\mathbf{y} - \mathbf{x}\|^2 \quad \forall \mathbf{x}, \mathbf{y} \in (f).$$

An immediate consequence of the definition is the following lemma.

Lemma 1 If \mathbf{x}^* is the local minimal point of f, the it has

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \frac{\alpha}{2} ||\mathbf{y} - \mathbf{x}^*||^2, \quad \forall \mathbf{y}.$$

Theorem 2 f is α -strongly convex if and only if $f(\mathbf{x}) - \frac{\alpha}{2} ||\mathbf{x}||^2$ is convex.

Theorem 3 Suppose $f \in C^1$. Then the following are equivalent:

- 1. f is α -strongly convex.
- 2. $\langle \nabla f(\mathbf{y}) \nabla f(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle > \alpha \|\mathbf{x} \mathbf{y}\|^2$.
- 3. Additionally, if $f \in C^2$, then $\nabla^2 f \succeq \alpha I$ everywhere ($\nabla^2 f$ is positive definite).

Theorem 4 Assume that f is a β -smooth and α -strongly convex function, and $f^* = \inf f(\mathbf{x})$ exists, then for any $\epsilon > 0$, choose $T \ge \frac{2\beta}{\alpha} \log \frac{\|\mathbf{x}^0 - \mathbf{x}^*\|}{\epsilon}$, it has $\|\mathbf{x}^T - \mathbf{x}^*\| \le \epsilon$.

Proof 2

$$\begin{aligned} \left\|\mathbf{x}^{t+1} - \mathbf{x}^*\right\|^2 &= \left\|\mathbf{x}^t - \mathbf{x}^* - \frac{1}{\beta}f(\mathbf{x}^t)\right\|^2 \\ &= \left\|\mathbf{x}^t - \mathbf{x}^*\right\|^2 + \frac{2}{\beta} \underbrace{\langle f(\mathbf{x}^t), \mathbf{x}^* - \mathbf{x}^t \rangle}_{ \substack{ \leq f(\mathbf{x}^*) - f(\mathbf{x}^t) - \frac{\alpha}{2} \|\mathbf{x}^t - \mathbf{x}^*\|^2 \\ \text{ follows from strong convexity} }}_{ \leq \left(1 - \frac{\alpha}{\beta}\right) \|\mathbf{x}^t - \mathbf{x}^*\|^2 + \underbrace{\frac{2}{\beta} \left(f^* - f(\mathbf{x}^t) + \frac{1}{2\beta} \|f(\mathbf{x}^t)\|^2\right)}_{f^* \leq f(\mathbf{x}^{t+1}) \leq f(\mathbf{x}^t) - \frac{1}{2\beta} \|f(\mathbf{x}^t)\|^2} \end{aligned}$$

$$\|\mathbf{x}^T - \mathbf{x}^*\|^2 \leq \left(1 - \frac{\alpha}{\beta}\right) \|\mathbf{x}^{T-1} - \mathbf{x}^*\|^2$$

$$\leq \left(1 - \frac{\alpha}{\beta}\right)^2 \|\mathbf{x}^{T-2} - \mathbf{x}^*\|^2 \leq \dots \leq \left(1 - \frac{\alpha}{\beta}\right)^T \|\mathbf{x}^0 - \mathbf{x}^*\|^2$$

$$\leq \exp\left(-\frac{\alpha}{\beta}T\right) \|\mathbf{x}^0 - \mathbf{x}^*\|^2,$$

where
$$\left(1 - \frac{\alpha}{\beta}\right)^T \le \exp\left(-\frac{\alpha}{\beta}T\right)$$
.

Example 1 Let us consider the portfolio management problem again. That is

$$\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \Sigma \mathbf{x} - \mu^{\top} \Sigma, \tag{4}$$

where $\Sigma \in \mathcal{S}_{++}^n$.

- $\nabla f(\mathbf{x}) = \Sigma \mathbf{x} \mu$, then it can be derived that f is $\lambda_{\max} := \lambda_{\max}(\Sigma)$ -smooth.
- $\nabla^2 f(\mathbf{x}) = \Sigma \succeq \lambda_{\min}(\Sigma)I$. So, it is λ_{\min} -strongly convex.
- Algorithm: $\mathbf{x}^{t+1} = \mathbf{x}^t \frac{1}{\lambda_{\max}}(\Sigma \mathbf{x}^t \mu) = (I \frac{\Sigma}{\lambda_{\max}})\mathbf{x}^t + \frac{\mu}{\lambda_{\max}}.$
- $\bullet \ \ \text{Convergence:} \ \|\mathbf{x}^{t+1}-\mathbf{x}^*\|^2 \leq (1-\tfrac{\lambda_{\min}}{\lambda_{\max}})\|\mathbf{x}^t-\mathbf{x}^*\|^2.$
- $\frac{\lambda_{\max}}{\lambda_{\min}}$ is the *condition number* of Σ .
- The higher the condition number, the lower the convergence.

References